
1

Linux Training
VUB – ULB

Stéphane GÉRARD

Fall 2023

2

Purpose of the course

● NOT a course for system administrators!
● Focus: working with the command-line,

manipulating and editing files
● Main final objective: being able to write some

simple shell scripts

3

Organization of the course

● Linux walk-through (in common):
– Why learn Linux?
– Discovering the Shell
– Manipulating files
– Other useful commands
– Writing simple shell scripts

● Hands-on (individual)

4

Training material

● Please download a copy of these slides on this
webpage :
https://homepage.iihe.ac.be/~sgerard/
(slides : Linux_for_beginners.pdf)

https://homepage.iihe.ac.be/~sgerard/

5

PART 1: Linux walk-through

6

Why learn Linux?

7

Linux today
● Linux is everywhere:

– Most academic computing clusters/supercomputers
– Many mass storage systems (“Big Data”)
– Data-centers of major companies like the so-called “GAFAM”
– Everyday equipment (like the box from your Internet provider)
– Internet providers infrastructure (webservers,...)
– Cloud providers
– Android is based on a branch of the Linux kernel, modified to

support hardware found in smart-phones, tablets,…
– ...

8

Linux in scientific computing
● Advantages:

– Portability
– Modularity
– Based on open standards
– Avoid complications and costs due to licenses (especially true on a cluster)
– Lots of tools available for scientific programming
– Unix philosophy of tools : only do one thing, but do it well.
– Easy to interact with development teams
– True multi-task and multi-user operating system
– Management of processes
– Documentation
– ...

9

Discovering the Shell

10

Logging in

● Linux is multi-user. As a practical consequence,
you are obliged to identify yourself before using
the system: that's the “login” step.

● Logging in to a system typically means to
provide a user name (or login) and a password.

11

SSH

● Secure Shell
● To open a session on a distant machine, with a

high level of security:
– Encryption of the communication
– Identification of the distant machine (to avoid man-

in-the-middle attack)

12

Exercises

● Open your preferred terminal.
● Login to Hydra with ssh:

ssh <your_user_name>@login.hpc.vub.be
● Close your connection to Hydra by entering

“exit”
● Re-open a new session on hydra
● Is it possible to open several sessions at the

same time? Try it!

13

Shell (1)
● Sometimes called “terminal” or “CLI” (Command Line

Interface)
● A shell is a command-line interpreter:

– Executes commands entered by user (interactive mode)
– Executes scripts (command mode)

● Different variants: csh, tsh, sh, Bash,…
● Exercise

To determine which shell you are currently using, type one of
the following command:

ps $$

14

Shell (2)
● Why use command-lines?

Many things can't be done or are very difficult to do
in a graphical environment. Examples:
– Executing an operation on files matching a given criteria
– Sending the output of a process in input of another

process
– …

● Working with scripts : task automation, re-usability,
modularity,...

15

Convenient features of Bash

Bash (or Bourne Shell) brings a lot of features:
– Process control
– Automatic completion
– Keeps an history of what user has typed
– Copy/paste
– Keyboard shortcuts
– ...

16

Exercises
● Enter the following informative commands:

date
hostname
w
id
whoami

What are these commands telling?
● Auto-completion: type the first 3 letters of the “history” command and type on the TAB

key ()
● Enter the “history” command
● Type the letter “l” and type twice on the TAB key
● Try to copy-paste some lines selected in your shell to a text file in your personal

computer
● Press on the upwards arrow key (↑) several times → What do you see?

17

The root user
● You always log in on a system using a given identity (or

“login” or “account”).
● On all Unix-like systems, there is a special account: root.
● Root account has ALL the privileges.
● Working with root account is dangerous, because:

– you can execute non-reversible commands that might damage your
files/data;

– you can break your system, making it very difficult to repair if you
are not an expert;

– you can create security holes that can be exploited by “bad guys”.

18

The prompt

● The prompt is a short message text at the
beginning of the command-line.

● On Linux, the prompt is also giving you some basic
information, like your user name and the machine
to which you are logged in.

● The prompt is ending by a '$' indicating that you
are an ordinary user (i.e. not the root user, whose
prompt is ending with '#').

● Can be customized by the user

19

Exercises

● What tells your prompt on Hydra?
● Try to enter the following commands:

visudo
useradd toto
cat /var/log/messages

What's the common result? Do you have an
idea why it fails?

20

User environment
● Environment is a set of variables that are available to all applications launched in the

shell.
● Standard environment variables:

– PATH = Colon separated list of directories to search for binaries
– HOME = Current user's home directory
– USER = Current logged in user's name
– SHELL = The current shell
– …

● To display the actual value of env. variable:
echo $<VAR>

● Exercises:
Try the previous command with the variables PATH, HOME, USER and SHELL.
Verify that the content of the PATH variable is well a colon-separated list of directories.

21

Manipulating files

22

Notations

Designation Notation
slash /
back-slash \
angle brackets < >
a value still to be defined <value>
caret ^
tilde ~
hash #
pipe |
dot .
colon :
semi-colon ;
square brackets []
curly braces { }
star *

23

Exercises

● Make sure you can find the previous characters
on your keyboard by trying to type them in the
shell.

24

To keep in mind when working with
command-lines

● Linux is case-sensitive. Example: “MyFile” is
not the same as “myfile”.

● In the shell, there is no trash-bin: once a file is
deleted, you can't revert. So, be very careful
when you want to delete a file!

25

Demonstration
Case sensitivity

● Type the following commands:
touch MyFile
touch myfile
ls

=> We've got two distinct files!

26

How files are organized

● The Linux file-system is unique and everything
is attached to the root directory that is noted “/”.

● A directory is just a special kind of file: it can be
viewed as a file pointing to a list of files.

● The files are organized in a tree.

27

Typical directory structure
Main directories

● /: is called the “root directory”
● /bin: contains binaries of basic commands
● /sbin: contains binaries of advanced commands (reserved

to administrators)
● /etc: contains the configuration files
● /home: that's where users have their personal files
● /var: data generated by the system and its applications

(mainly logfiles, databases,...)
● /tmp: contains temporary files, all users have write access

28

Main file management commands
● ls: print the list of files in a directory
● pwd: print the current directory
● cd: change the current directory
● cp: copy files
● mkdir: directory creation
● rmdir: directory removal
● mv: move files
● rm: delete files
● chmod: change the permissions of a file

29

Usual syntax of commands

Command [option...] [argument...]
Options are generally preceded by a minus character “-”.
Example :
ls -l /bin
ls: name of the command

-l: option

/bin: argument
Most commands accept a list of arguments separated by
spaces when there is no ambiguity.

30

Current directory
● Command : pwd

Prints the absolute path of the current directory (or working
directory)

● Each user has a personal directory, called the home directory
(or homedir for short).

● The current directory can be changed with the cd command:
cd <destination_directory>

Example:
cd /tmp

→ change the current directory to /tmp

31

Exercises
● Display the path of your home directory with the following

command:
echo $HOME

● Try the following sequence of commands:
pwd
cd /tmp
pwd
cd
pwd

From the previous sequence, what's the effect of command “cd”
without argument?

32

Listing files (1)

● Command: ls
● List files in a directory (default is the current

directory)
● Default behavior:

– alpha-numeric order
– files beginning with a dot are not printed (hidden

files)

33

Listing files (2)
● Useful ls commands:

ls -a
→ list all the files (including hidden files)

ls -l
→ long listing : display all file information (metadata)

ls -al
→ just a combination of the two previous commands

ls -lh
→ long listing with sizes in human readable format

ls -t
→ chronological order (most recent first)

ls -ltr
→ long listing, display in reverse chronological order

ls -S
→ list the biggest files first

34

Exercises
● Try the previous commands on the directory /tmp.
● Are there hidden files in your home directory? Which

ones? What command did you use?
● What's the biggest file in the /sbin directory? What

command did you use?
● Convince yourself that “ls” command can take a

space-separated list of arguments by entering the
following:

ls -al /vsc /home

35

Listing files (3)

● Example:
[stgerard@nic112 ~]$ ls -al

total 201926

drwx------ 16 stgerard dntk 68 Oct 16 15:01 .

drwxr-xr-x 489 root root 492 Dec 1 02:00 ..

drwxr-xr-x 2 stgerard dntk 94 Mar 17 2014 accounting

-rwx------ 1 stgerard mech 196 Feb 22 2013 ask_dns.pl

-rw------- 1 stgerard mech 19672 Oct 13 15:22 .bash_history

-rw-r--r-- 1 stgerard mech 42 Feb 24 2011 .bashrc

drwx------ 2 stgerard fd060 3 Sep 23 2009 .config

-rw------- 1 stgerard mech 7746 Feb 21 2011 dns_records

drwxr-xr-x 7 stgerard dntk 8 May 12 2014 examples

Permissions Ownership Size (in
octet)

Last
modification
date

36

Listing files (4)
● Explanation of “ls -al” output:

– 1st column: one letter giving the file type, followed by the permissions (9 characters);
possible file types:

● -: ordinary file
● d: directory
● l: symbolic link
● s: socket
● p: named pipe
● b: block device
● c: special file

(Permissions will be explained later.)
– 2nd column: contains a number whose meaning depends on the file type. For an ordinary

file, it is the number of hardlinks pointing to the file. For directories, it is the number of
subdirectories (+2 to take into account the “.” and “..” directories).

– 3rd and 4th columns: owner and group owner of the file
– 5th column: file size in bytes
– 6th column: last modification date
– 7th column: short (relative) name of the file; if the file is a symbolic link, the target is

indicated

37

Absolute and relative path
● Absolute path: the full path, beginning from the root

directory.
Example:

/home/sgerard/test1/testfile.txt
● Relative path: only gives the name of a file relative to

the current directory.
Example:
If your are in the directory /home/sgerard/test1:

testfile.txt

38

Special directory names
● Can be viewed as generic shortcuts:

– The directory named “.” is pointing to the current directory.
– The directory “..” is pointing to the parent directory of the current directory.
– The directory “~” is pointing to the home directory of the current user.

● Example:
Back to example of previous slide:

testfile.txt
./testfile.txt
$PWD/testfile.txt

are naming the same file.

39

Exercises
● Make sure that your current directory is your home

directory. (Command?)
● What's the difference between the following commands:

ls -al
ls -al ~
ls -al .

● Write down the absolute path of the file '.bashrc' located
in your home directory? Check that this path is correct
with the “ls” command.

40

Creating symbolic link
● Or "soft link" or "symlink"
● A special kind of file pointing to another file
● Useful to simplify access to files or directories (kind of "shortcut") when

the path is complex for example
● Syntax to create a symlink:

ln -s <target_file> <name_of_link>
● To remove a symlink:

unlink <path_of_link>
● Never use "rm" to remove a symlink! With "rm", there is always a

risk of confusion between removing the link and removing the
target of the link!

41

Remarks for Windows users (1)
● In the MS world, file names are ending with “.” followed

by a few letters (usually 3). This is called the “extension”,
and it indicates to the operating system with which
application the file must be opened.
In Linux, you are not obliged to add an extension to file
names (although it's a good habit!)

● Avoid spaces in file names, because space is interpreted
as a list separator in some commands.
If a file name contains space(s), use surrounding quotes
to get rid of ambiguities.

42

Remarks for Windows users (2)

● About the usage of “/” and “\” that is different in
the two operating systems:
– In Linux, the “/” is the directory separator, and the “\”

is the escape character. (“Escaping” means
avoiding interpretation of something.)

– In Windows, the forward-slash “/” is the command
argument delimiter, while the backslash “\” is a
directory separator.

43

Exercises
● To illustrate the previous remark about using spaces in

file names, let's do the following experiment:
– Create a file with a space in its name:

touch 'my file'
(What would have happened without the quotes?)

– Check the results of the following commands:
ls -l my file
ls -l 'my file'

– To clean-up, enter the following:
rm 'my file'

44

File size (1)
● The fundamental unit is the bit, which is the smallest unit of

information in a binary system (values : 0, 1).
● By default, size is expressed in bytes (or octets).
● One byte is 8 bits. The unit symbol is: B.
● In text files, a character is coded on one byte. So, the size of a

text file in bytes is equal to the number of characters it contains.
● For multiples, don't forget that in computer sciences, powers of

1024 are used instead of powers of 1000, because 1000 is
approximately 2^10.

● Human readable format: size expressed using multiples, making
it easier to read.

45

File size (2)

Symbol Value
K → Kilo 1024 bytes
M → Mega 1024 * 1024 bytes
G → Giga 1024 * 1024 * 1024 bytes
T → Tera 1024 * 1024 * 1024 * 1024 bytes
P → Peta 1024 * 1024 * 1024 * 1024 * 1024 bytes

● Unit symbols used in the shell:

46

Exercises

● What's the size in octets of the biggest file in
/sbin?

● Get the size in human readable format (clue:
option for human-readable format is '-h').
Command?

47

File globbing (1)

● Substitution characters interpreted by the shell
to generate file names:

* : match 0 or more characters
? : match 1 character
[abc] : match one of the characters listed
[!abc] : match any character not listed
[a-z] : match one character in the range
{pear,peach} : match one word in the list

48

File globbing (2)
● Some examples:

– s* : files whose name begins with “s”
– s? : files whose name begins with “s” followed by one and only one

character
– *.c : files whose name ends with “.c”
– *[0-9] : files whose name ends with a digit

● File globbing must not be confused with regular expressions
(or regex), which is a more powerful technique aimed at
pattern matching. If you want to learn more about regex:
https://www.digitalocean.com/community/tutorials/an-introduc
tion-to-regular-expressions

https://www.digitalocean.com/community/tutorials/an-introduction-to-regular-expressions
https://www.digitalocean.com/community/tutorials/an-introduction-to-regular-expressions

49

Exercises

● Using the “ls” command with the appropriate
globbing expressions in argument, find the
following files in /sbin:
– files whose name begins with 's';
– files whose name is two characters long;
– files whose name ends with a dot followed by three

characters;
– files whose name contains the string 'fs'.

50

File copy
● Command: cp
● Examples:

cp myfile1 myfile2
→ create a copy of the file “myfile1” called “myfile2”

cp /home/sgerard/test1/myfile.txt .
→ create a copy of “myfile.txt” in the current directory

● To copy a directory and its content, you need recursivity
option “-R”. Example:

cp -R test1 test2
→ create a copy “test2” of directory “test1”

51

Moving a file

● Command: mv
● Examples:

mv file1 file2
→ is the same as renaming “file1” to “file2”

mv /home/sgerard/myfile.txt .
→ move the file “myfile.txt” to the current directory

mv dir1 dir2
→ renaming directories works the same as for files

52

Deleting a file
● Command: rm
● Examples:

rm file1
rm /home/sgerard/file1

● To delete a directory, the recursive option “-r” must be added:
rm -r /home/sgerard/dir1
rm -rf

→ with “-f”, non confirmation is asked
● BE CAREFUL USING rm COMMAND: IT IS NOT REVERSIBLE!
● A solution: create your own “garbage bin”, a kind of “temp” directory

where you can move your old files into.

53

Exercises

● Make a backup copy of the file .bashrc in your
homedir:

cp .bashrc .bashrc.backup
● Rename the backup:

mv .bashrc.backup bashrc_backup_29042020
● Delete the backup:

rm bashrc_backup_29042020

54

Creating and deleting a directory

● Command: rmdir
rmdir dir1

→delete directory “dir1” if this directory is empty
● Command: mkdir

mkdir dir1
→ create directory “dir1” in the current directory

mkdir -p dir1/subdir1/subsubdir1
→ create directory “subsubdir1” and its parent directory

55

Exercises
● In your homedir, create the following directories:

temporary_directory/exercise1
temporary_directory/exercise2

You can do it in only one step by issuing:
mkdir -p temporary_directory/{exercise1,exercise2}

● Create a file in the last directory:
touch temporary_directory/exercise2/answers.txt

● Try to delete directory:
rm temporary_directory
rmdir temporary_directory

Why does it fail? Now, try this way:
rm -r temporary_directory

56

File permissions (1)
● Remember: Linux is natively a multi-user system, so you

need permissions to protect your files against other users.
● Permissions are defined for 3 entities:

– owner (u);
– group of the owner (g);
– the rest of the world (o).

● Three atomic permissions: read (r), write (w), execute (x)
● Giving one bit position for each permission, you get a

number. Examples:
rwx 111 7 in decimal
rw- 110 6 in decimal
r-x 101 5 in decimal
r-- 100 4 in decimal

57

File permissions (2)

● What the right to execute (x) means:
– For a file, makes it executable (binary, script)
– For a directory, gives the right to enter the directory

and access its content
● What the right to modify (w) means for a directory:

– To have the right to modify the content of a directory,
you need to have the write permission on it.

– In particular, if you don't have the write permission, you
can't delete, create or rename a file in this directory.

58

File permissions (3)
● Some examples of permissions sets:

775 → rwx rwx r-x
→ on a directory, give the owner and his group the right to
read, modify and browse the directory, other users can only
read and browse

664 → rw- rw- r--
→ on a file, give the owner and his group the right to read and
modify, other users can only read

400 → r-- --- ---
→ the owner has the right to read, other users have no access

59

Changing permissions (1)

● Command: chmod
● Examples:

– chmod 775 file1
→ give all the rights to owner and his group, other users
are allowed to read and execute

– chmod 600 file1
→ give owner the right to read and write, other users
have no access

60

Changing permissions (2)
● Another way to use it, with the following notations:

– People concerned:
● u : owner
● g : group
● o : other
● a : all

– Action:
● + : add the right
● - : remove the right

– Rights that you want to change:
● r (read)
● w (write)
● x (execute)

● Putting all together, in some examples:
chmod u+x file1

→ add the right to execute to owner

chmod go-w file1
→ remove the right to modify to owner group and other users

61

Exercises
● Try to print out the content of /var/log/messages:

cat /var/log/messages
Why does it fail? Check the permissions of this file:

ls -al /var/log/messages
● Do you have the right to see the content of the following directories:

/var
/var/log

● Who can see the content of your home directory?
● Let's say you would like to share a document with only 2 of your

colleagues. Is it possible?

62

Transferring files with scp
● Transfering a file from your laptop to

hydra.vub.ac.be with scp:
scp <file_to_copy> <your_login>@login.hpc.vub.be:~/

Note that what follows the “:” is the destination on
the remote machine. In the command above, the
destination is “~/”, i.e. your home directory on hydra.

● To transfer a directory and its content, add the
option “-r”:

● scp -r <dir_to_copy> <your_login>@login.hpc.vub.be:~/

63

Finding help on commands
● Command man followed by the command name:

– Help is displayed in page format
– Use arrows or Page-up/Page-down to navigate in pages content
– Exit man pages by typing “q” key

● To search for a word in the man pages, just type “/” followed by the word,
and then:
– Search for the next occurrence with “n”
– Search for the previous occurrence with “N”

● Command name followed by option -h or --help
● Command info followed by the command name: usage is similar to man.
● Online help:

https://www.gnu.org/software/coreutils/manual/html_node/index.html

https://www.gnu.org/software/coreutils/manual/html_node/index.html

64

Other useful commands

65

Commands to handle text files
● cat: concatenate files and print on the standard output
● more, less: view file content page by page
● head/tail: view first/last part of a file
● wc: print newline, word, and byte counts of a file
● sort: sort lines of text files
● diff: compare files line by line
● grep: print lines matching a pattern
● cut: remove sections from each line of files
● touch: change file timestamps
● echo: display a line of text

66

Handling text files
cat

● To concatenate and print files on the standard output (or
STDOUT, i.e. the screen by default)

● Examples:
cat file1

→ print the content of “file1” to STDOUT

cat file1 file2
→ print the concatenation of “file1” and “file2” to STDOUT

● Exercise:
Try the following command:

cat /proc/cpuinfo

67

Handling text files
more and less

● To print the content of a file in page mode
● Typical usage :

more <filename>
less <filename>

● Exit the command by typing “q”
● Similar commands, but “less” allows backward and forward

movements with arrows and PageUp and PageDn keys.
● Exercises:

Try these two commands on /proc/cpuinfo

68

Handling text files
head and tail

● To view only a part (beginning or end) of a file:
– head: to view the beginning of a file
– tail: to view the end of a file

● Examples:
tail -n 20 filename

→ show the last 20 lines of filename

head -n 20 filename
→ show the first 20 lines of filename

● Exercises:
Try the two previous commands on /proc/cpuinfo

69

Handling text files
wc

● To print some statistics about a textfile: word,
newline, and byte counts.

● Examples:
wc -l myfile

→ print the number of lines in “myfile”

wc -w myfile
→ print the number of words in “myfile”

70

Handling text files
sort

● To sort the lines of a text file
● Examples:

sort file1
→ print the sorted content of “file1”

sort -o file2 file1
→ sorted content of “file1” is sent to “file2”

ls | sort -r
→ the same as above, but in reverse order

● Remark: sort doesn't modify the file content!
● Exercises: in the hands-on part

71

Handling text files
diff (1)

● To compare files line by line
● Example 1:

$ cat file1
peach
lemon
orange

$ cat file2
peach
lemon
pear
orange

$ diff file1 file2
2a3
> pear

Read the output like this:
“If you add line 3 of file2 after line 2 of
file1, you get file2.”

72

Handling text files
diff (2)

● Example 2:
$ cat file1

peach
lemon
orange

$ cat file2
peach
lemon
pear
strawberry
orange

$ diff file1 file2
2a3,4
> pear
> strawberry

Read the output like this:
“If you add line 3 to 4 of file2 after line 2
of file1, you get file2.”

73

Handling text files
grep

● To print only lines matching a pattern
● Only prints the lines that match the criterion given in

option (horizontal slicing)
● Examples:

grep 'apple' file1
→ print the lines from file1 that contain 'apple'

grep -v 'apple' file1
→ print the lines from file1 that don't contain 'apple'

● Exercises: in the hands-on part

74

Handling text files
cut
(1/3)

● To remove sections from each line of file
● Only prints the part of each line that is described by options (vertical

slicing)
● Two basic ways of slicing:

– Based on character positions → option “-c”
– With structured lines (line = list of values separated by a character): based on

fields positions → option “-f” with “-d”
● Defining slices:

N N'th byte, character or field, counted from 1
N- from N'th byte, character or field, to end of line
N-M from N'th to M'th (included) byte, character or field
-M from first to M'th (included) byte, character or field

75

Handling text files
cut
(2/3)

● Example 1:
cat fruits.txt

apple
pear
apricot

cut -c 1-3 fruits.txt
app
pea
apr

76

Handling text files
cut
(3/3)

● Example 2:
cat beatles.txt

1:Paul:bass
2:Ringo:drums
3:George:guitar

cut -f2 -d: beatles.txt
Paul
Ringo
George

77

Handling text files
touch

● To change the timestamps (access and
modification times) of a file to the current time. If
the file doesn't exist, it is created empty, unless
options “-c” or “-h” are used.

● Example:
touch test.txt

→ access and modification times of 'test.txt' are set to the
current time; if the file 'test.txt' doesn't exist, it is created empty

● Exercises: in the hands-on part

78

Handling text files
string arguments

● When giving a string as argument to a command, it should
always be surrounded by simple quotes (''), or double quotes (“”)
if it contains ambiguous characters (like spaces for example):
– Strings surrounded by simple quotes: characters inside the string are

not interpreted by the shell.
– Strings surrounded by double quotes: some special character

sequences are interpreted because they have a special meaning. For
example:

\\ backslash
\b backspace
\n new line
\t horizontal tab

79

Handling text files
echo

● To display a line of text on the standard output
● It is frequently used with stdout redirection to

modify the content of a text file.
● Examples:

echo 'This is a sentence written on one line.'
echo 'This is a sentence \n written on one line.'
echo -e 'This is a sentence \n written on two lines.'

● Exercises: try the previous examples

80

Some other useful commands
● wget: to dowload files from the Internet
● date: print or set the system date and time
● df: report file system disk space usage
● du: estimate disk space usage
● tar: manipulate archives
● file: determine file type
● which: show the full path of a command
● find: search for files

81

Some other useful commands
wget

● To download files from Internet
● Example:

wget https://archive.org/download/ulysses04300gut/ulyss10.txt

→ download the file “ulyss10.txt” from the URL in argument
● Exercises:

– Try out the previous command.
– The downloaded file contains the text of a famous

novel. Based on the file size, compute how many
such books we could store on a 1 TB hard drive?

82

Some other useful commands
date

● To print or set the system date and time
● Examples:

date
→ print the current date and time

date --date='2 days ago'
→ print the date of the day before yesterday

date +%s
→ print the date in Unix format

(= number of seconds since the epoch, i.e. 1970-01-01 00:00:00 UTC)
● Exercises: try out the three previous examples
● More examples:

https://www.gnu.org/software/coreutils/manual/html_node/Examples-of-date.html

https://www.gnu.org/software/coreutils/manual/html_node/Examples-of-date.html

83

Some other useful commands
df

● To report file system disk space usage
● Examples:

df
→ display all file systems and their disk usage

df -h
→ same as above, but use “human readable” format

● Exercises: try out the two previous commands

84

Some other useful commands
du

● To estimate file space usage
● Examples:

du -h /home
→ summarizes disk usage of directory /home recursively
→ sizes are printed in human readable format

du -h --max-depth=1 /home
→ summarizes disk usage for level 1 subdirectories
→ sizes are printed in human readable format

● Exercise: get the size of your homedir in human format

85

Some other useful commands
tar

● To manage archives (= many files gathered into
a single tape or file)

● Examples:
tar cvzf backup.tgz /home

→ archives the content of /home into a file backup.tgz
→ compression is used (hence the “z” in options)

tar xvzf backup.tgz
→ extracts and uncompresses files from backup.tgz

86

Exercises
● Create a directory 'test_tar' with two files, 'file1' and 'file2' in it.
● Create a compressed archive of the previous directory:

tar cvzf test_tar.tgz test_tar
● Check the existence of the archive.
● Delete the directory 'test_tar'
● Extract the archive:

tar xvzf test_tar.tgz
● You should have recovered the directory the directory

'test_tar'.

87

Some other useful commands
which

● Displays the absolute path of commands
● To find the absolute path, the shell with do a search in each

directory mentioned in the PATH environment variable.
● Examples:

which df
→shows the full path of command 'df'

which showq
→shows the full path of command 'showq'

● Exercises:
Try the previous examples and verify that the paths of these
commands are mentioned in the PATH variable.

88

Some other useful commands
file

● To determine the type of a file
● Examples:

file /usr/bin/du
→ /usr/bin/du: ELF 64-bit LSB executable, x86-64

file TQC_UJF_10.pdf
→ TQC_UJF_10.pdf: PDF document, version 1.4

89

Some other useful commands
find

● To search for files in a directory hierarchy
● Syntax:

find [option...] [path...] [expression]
● Examples:

find . -name "*.c"
→ find in current directory all files ending with “.c”

find . -type d -name "*s"
→ find in current directory all directories ending with “s”

find ./dir1 -type f -ok rm {} \;
→ find all files in current directory and delete them asking a confirmation

● Exercises: in the hands-on part

90

Writing simple shell scripts

91

What is a shell script
● A shell script is a text file containing commands that will

be executed in a sequential way by the shell
interpreter.

● The goal of shell scripting is to automate the execution
of a series of tasks, reducing human intervention at a
minimum.

● Ideally, a shell script begins with a special line called
“shebang” that gives the absolute path of the
interpreter. The standard shebang is:

#!/bin/bash

92

Shell scripting limitations
● Shell scripting is perfect to launch some shell commands

with arguments and options (wrapper scripts).
● However, shell scripting suffers from severe limitations:

– Natively limited to integer calculations
– Not optimized for computation
– Poor syntax, sometimes not very handy
– ...

● For all these reasons, you should not use shell scripts for
scientific computation. Instead, use an advanced scripting
language like Python or Julia.

93

Creating a shell script

● Only tool needed : a text editor (see next slides)
● Once the content of the script is edited, make it

executable with the following command:
chmod u+x <your_script>

● To launch your script:
./<your_script>

94

Text editing
● Command-line text editors:

– Most of the time, they are installed by default and/or they have
few requirements

– Examples: vi, vim, nano, emacs…
– Some editors may require some practice before you can feel

at ease with them (that's the case with vi, vim and emacs).
● Graphical text editors:

– Graphical interface → easier to use
– Examples : gedit, Kate, nedit,...
– Require X11 forwarding if working on a distant machine

95

Text editing : nano (1)
● Launching nano:

nano <name_of_the_file_to_edit>
You can also just type “nano” without specifying a filename. You
will then be asked to give a filename when exiting the program.

● Text editing: just like in any other text editor
● Commands are called using shortcuts. At any time, the main

relevant commands are reminded at the bottom of the nano
window.

● Shortcut: CTRL key (noted with a caret, i.e. “^”), followed by a
lowercase letter.

96

Text editing : nano (2)

● If you need help about shortcuts/commands:
CTRL + g

● Copy/paste:
– text selection with the mouse;
– copy and paste with the “Edit” menu of the window.

97

Text editing : micro

● Offers similar functionalities + syntax colouring
● Alt+G: list of keyboard shortcuts
● Ctrl+G: Help
● Ctrl+Q: Quit
● Ctrl+S: Save
● Ctrl+Z: Undo
● Ctrl+Y: Redo

98

Exercises
● Let's write our first shell script called “script.sh”:

– We will launch nano to edit the content:
nano script.sh

– The content:
#!/bin/bash
echo ‘Hello World!’

– Exit nano by typing 'CTRL X' and press 'Y' to save
– Make the script executable:

chmod u+x script.sh
– Run the script :

./script.sh

99

Variables
● Assigning a value to a variable:

Syntax:
<variable_name>=<value>

Examples:
myvar1='example of a string value'
myvar2=”another example”
myvar3=123

● Using the value of a variable:
You need to append the '$' sign at the beginning of the variable name.
Examples:

echo $myvar1
echo “The number is $myvar3”

100

The “if” command (1/2)
● Syntax:

if [<condition>]
then
 <commands_if_condition is true>
else
 <commands_if_condition_is_false>
fi

● The condition is an expression that evaluates to true
or false (boolean).

101

The “if” command (2/2)
● Example:

The following code :
myvar=3
if [$myvar -gt 2]
then
 echo “variable greater than 2”
fi

will result in printing the sentence “variable greater than 2”.
● Exercise :

Try the previous example in your shell. Redo the exercise with
myvar=2 to check what happens if the condition is not fulfilled.

”greater than”

102

Nested “if” commands
● Syntax:

if [<condition>]
then
 <commands_if_condition is true>
elif [<condition>]
then
 <commands_elif_condition_is_true>
else
 <commands_elif_condition_is_false>
fi

● The “elif” command can be understood as “else if”. There can be as many
“elif” as needed.

103

Writing conditions (1/3)

● Conditions on strings:
Condition Meaning
$string1 = $string2 Returns true if the 2

strings are identical
$string1 != $string2 Returns true if the 2

strings are different
-z $string1 Returns true if the

string is empty
-n $string1 Returns true if the

string is not empty

104

Writing conditions (2/3)

● Conditions on numbers:
Condition Meaning
$num1 -eq $num2 Returns true if the 2

numbers are equal
$num1 -ne $num2 Returns true if the 2

numbers are not equal
$num1 -lt $num2 Returns true if num1 is

strictly little than num2
$num1 -le $num2 Returns true if num1 is

little than or equal to
num2

$num1 -gt $num2 Returns true if num1 is
strictly greater than
num2

$num1 -ge $num2 Returns true if num1 is
greater than or equal
to num2

105

Writing conditions (3/3)

● Conditions on files:
Condition Meaning
-e $filename Returns true if the file

exists
-d $filename Returns true if the file

is a directory
-f $filename Return true if the file is

not a directory

Remember that Linux considers (almost) everything as a file! So, a
directory is viewed as particular type of file.

106

Complex conditions

● Logical operators:
|| → logical “or”
&& → logical “and”

● Syntax:
[<condition1>] || [<condition2>]
[<condition1>] && [<condition2>]

107

While loop

● Principle:
While a given condition is true, a block of
commands is repeated.

● Syntax:
while [<condition>]
do

<block_of_commands>
done

108

For loop

● Principle:
A block of commands is repeated for each value
found in a list.

● Syntax:
for <variable> in <list>
do
 <block_of_commands>
done

109

Onliners with for loops

● Try out these examples:
for i in {1..5}; do echo "Hi, $i"; done

for((i=1;i<=10;i+=2)); do echo "Welcome $i times"; done

for i in *; do echo "$i"; done

110

Process management

111

Process and program

● Process: a running instance of a program.
● Program: an executable file (sometimes referred

to as binary) that has been compiled from source
code into machine code.

● Daemon: a process that runs continuously in the
background, rather than under the direct control of
a user.

● Each process is identified by a unique id, the PID.

112

Viewing processes
● Main commands to get a quick overview of the processes:

ps aux
→ a snapshot of all processes
→ 1st column shows the user
→ 2nd column shows the PID of each process
→ last column shows the command

top
→ a dynamic real-time view of the processes
→ displays information about resources (CPU & Mem) consumption
→ exit by typing 'q'

pstree
→ processes are displayed in tree
→ interesting to see the relations between processes

113

Exercises

● Try the 3 previous commands.
● Focusing on the non-root processes, can you

see if there are other users busy on your login
node?

● Identify the heaviest processes running on your
login node, in terms of CPU time and/or
memory.

114

Process states

● Since there are generally more processes than
CPUs/cores, not all processes can be running
at the same time.

● A process can evolve through different states:
– Runnable
– Sleeping
– Uninterruptable sleep state
– Defunct or Zombie

115

Process life cycle

D

S

R

T

Z

Uninterruptable sleep

Woken

Interruptable sleep

Woken / signal

Exit

Signal

116

Process in background
● When dealing with long process
● Just add an ampersand (&) at the end of the command before

typing ENTER
Example:

[stgerard@nic50 ~]$ sleep 100 &
[1] 23019

The number between brackets is the job id, not to be confused with
the corresponding process id (PID) that is the number right after.

● To view all the processes in background:
jobs

117

Killing a process
● Graceful way:

You want to stop the process the normal way (like you
would do by doing CTRL F4 or CTRL C), saving its
state. Command:

kill -SIGTERM <pid>
● Forcefully:

When your process became unresponsive…
Command:

kill -SIGKILL <pid>

118

Process state codes

● From documentation of “ps”:
R running or runnable (on run queue)
D uninterruptible sleep (usually IO)
S interruptible sleep (waiting for an event to complete)
Z defunct/zombie, terminated but not reaped by its
parent
T stopped by a job control signal
[…]

119

Exercises
● This exercise illustrates how you can stop a process

and let it continue in background:
sleep 100

→ will pause during 100 seconds

CTRL Z
→ put the sleep process in “stopped” state

ps -o pid,state,command
→ to check the status of the sleep process

bg
→ the process is put back running in background

120

Running long tasks

● If you terminate a shell session, the processes
you’ve put in background will keep on running.

● However, the good practice is to execute long
tasks via job submission.

121

Nesting commands

● Notation: $(...)
● Useful when the argument of a command is the

result of another command
● Examples:

ls -al $(which bash)
touch testfile_$(date +%F)

● Exercises: try the previous examples

122

Input, output and error

● In Unix-like operating systems, each process is
automatically assigned three data streams: one
input stream, called standard input (or stdin),
and two output streams, called standard output
(or stdout) and standard error (or stderr).

● By default:
– stdin is the keyboard
– stdout and stderr are the screen

123

I/O redirection (1)

● stdin, stdout and stderr can be redirected to a
file:

> : redirect standard output (overwrites)
< : redirect standard input
>> : redirect standards output (adds)
2> : redirect standard error
2>&1 : redirect standard output and error

124

I/O redirection (2)
● Examples:
ls -al > dircontent.txt

→ print the output of “ls -al” in file “dircontent.txt”

date >> dircontent.txt
→ add the date at the end of “dircontent.txt”

./mycommand.sh 2> error.txt
→ send error messages of the script in file “error.txt”

./mycommand.sh > output.txt 2> error.txt
→ send output in “output.txt” and error messages in “error.txt”

./mycommand.sh > output_and_error.txt 2>&1
→ send output and errors in the same file “output_and_error.txt”

125

Pipe
● Linux is multi-task. One practical consequence: it is

possible to send directly the output (stdout) of a
process to feed the input (stdin) of another process.

● To interconnect processes, a pipe (or tube) is used.
It is represented by a “|”.

● Examples:
ls | sort
ls | sort -r
find /u/ | sort | more

126

Exercises
● Try the following commands:

ls -al > curdircontent.txt
find /sbin/ | sort > sbincontent.txt

Try to figure out what these commands are doing, and check that the
content of the resulting files is in line with your expectations.

● Try the following command:
ls -al /user/brussel/*/$(whoami) /dontexist/$(whoami)

The previous command should generate an error message. Why?
You can separate the normal output from the error messages by doing this:

ls -al /user/brussel/*/$(whoami) /dontexist/$(whoami) >
output.txt 2> error.txt

Check the content of the files “output.txt” and “error.txt”.

127

Running applications
● Just type the application name and validate. Tip: don't

forget to use TAB key to benefit from auto-completion!
● In some cases, you might get a “command not found”

message, meaning that the binary was not found in
PATH. Solutions:
– Either add the directory of the binary to the PATH variable;
– Or type the full path of the binary;
– Or get into the directory of the binary and type :

./name_of_binary

128

Environment
● Ordinary variables are local in the sense that they are only visible in the context

where they are defined. On the contrary, an environment variable is one that can be
inherited to all the processes that are created after it has been defined.

● To print all your environment variables and their actual values, use “env” command.
● An environment variable can be a list of values (separated by “:” in Bash shell).
● To print the value of a variable, its name must be preceded by a “$”:

echo $<MYVAR>
Example: echo $MYVAR

● To change the value of an environment variable:
export <MYVAR>=<VALUE>

or, in case of a list:
export <MYVAR>=$<MYVAR>:<VALUE>

● Exercise: see the hands-on part

129

Useful references
● www.tldp.org

– The Linux Documentation Project
● www.linfo.org

– High quality information about Linux and Free Software
● www.ibm.com/developerworks/linux/

– A very good starting point to learn basics of Linux
● www.gnu.org

– One of the most complete documentation on the GNU commands
● https://software-carpentry.org/lessons/index.html

– Basics skills needed in research computing

http://www.tldp.org/
http://www.linfo.org/
http://www.ibm.com/developerworks/linux/
http://www.gnu.org/
https://software-carpentry.org/lessons/index.html

130

PART 2: Hands-on sessions

131

Hands-on sessions

● Session 1: Mastering commands
● Session 2: Writing shell scripts
● Lab 1: Exploring a big text file

132

Recommendations for the hands-on
sessions

● Please take note of your answers.
● If you don't find the answer to an exercise, don't

hesitate to ask me or my colleagues for help.
● Answers to the exercises are available on this

page:
https://homepage.iihe.ac.be/~sgerard/

https://homepage.iihe.ac.be/~sgerard/

133

Hands-on
Session 1

man is your friend!
● Using the man command, find the meaning of these

commands:
ls -F
date --reference=/etc/passwd

● Using the man command, find the correct command to
display the current date in “dd/mm/yyyy” format.

● Using the man command, find the correct command to
display the current date in Unix time (i.e. the number of
seconds that have elapsed since 1970-01-01 00:00:00 UTC).

134

Hands-on
Session 1

Doing research in file content with grep
● We will do the exercises on a logfile that you can download here:

http://homepage.iihe.ac.be/~sgerard/20171002.tgz
(Clue: use 'wget' with option '--no-check-certificate')

● The logfile has been compressed within a tar archive. Extract the file
from the archive.

● How many lines contain the word LOG_ERROR?
● Find all events (lines) corresponding to 'Exit_status=0'? How many

such events are there?
● Find all events (lines) corresponding to an 'Exit_status' not equal to

0. How many such events are there?

http://homepage.iihe.ac.be/~sgerard/20171002.tgz

135

Hands-on
Session 1

Sorting files with sort
● Download this tarball and extract its content:

http://homepage.iihe.ac.be/~sgerard/cpusecnodes.tgz
● Have a look at its contain to understand how it is

structured.
● Sort the file on the first column redirecting the output to a

file 'cpusecnodes.sorted'. Clue 1: the sort being based on a
numeric value, look at the man pages of 'sort' to find the
correct option. Clue 2: use I/O redirection with '>'.
Warning: The file to sort being quite big, please be patient !

http://homepage.iihe.ac.be/~sgerard/cpusecnodes.tgz

136

Hands-on
Session 1

Sorting numbers with sort
– Create a file file_to_sort.txt with this content:

02
01
10
2
12

– Sort the file using “sort”. Are the number in the correct numeric
order?

– Now, sort the file using “sort -n”.
– Using man, find the correct option to remove duplicates, and test it.

137

Hands-on
Session 1

Monitoring long processes with time and top
– Open a second shell session
– In the first shell, launch this command:

time sort cpusecnodes > cpusecnodes.test
While this command is running, have a look at the top
statistics on the second shell. Is the sort process using a
lot of resources? Is it running on a single core?

– When the previous sorting is complete, look at the
statistics. The real time is the time elapsed from your
point of view.

138

Hands-on
Session 1

Sorting and filtering command results thanks to
pipes
– Sort the output of command “ps aux” by user name
– Print the output of command “ps aux” without the

processes belonging to root

139

Hands-on
Session 1

Comparing files with diff
● Download these 2 files:

https://homepage.iihe.ac.be/~sgerard/nodelists/201
61001
https://homepage.iihe.ac.be/~sgerard/nodelists/201
71001
These are lists of a machines that were reported to
be in production in computing cluster at two
different dates (01/10/2016 and 01/10/2017).

● Using diff command, find out which machines were
removed from or added to the cluster.

https://homepage.iihe.ac.be/~sgerard/nodelists/20161001
https://homepage.iihe.ac.be/~sgerard/nodelists/20161001
https://homepage.iihe.ac.be/~sgerard/nodelists/20171001
https://homepage.iihe.ac.be/~sgerard/nodelists/20171001

140

Hands-on
Session 1

File searching with find
● Find files in /bin with size bigger than 100K.
● Find files in /etc whose name is ending in “.conf”.
● What's this command doing:
find ~/ -name "*.txt" -mtime -60 -exec
cat {} \;

Don't forget: man is your friend!

141

Hands-on
Session 1

Vertical slicing with cut
● Create a file “fruits.txt” with the following content:

abricot
banana
pear

Find the command to print out the first 3 letters of each line.
● Create a file “beatles.txt” with the following content:

1:Paul:bass
2:Ringo:drums
3:George:guitar

Find the command to print out the second column.

142

Hands-on
Session 2

A shell script taking two arguments
● Write this code into a file “name.sh”:

#!/bin/bash
example of using arguments to a script
echo "My first name is $1"
echo "My last name is $2"
echo "Total number of arguments is $#"

● Make the file executable:
chmod u+x name.sh

● Run the script with its two arguments:
./name.sh <first_name> <last_name>

143

Hands-on
Session 2

A shell script with a “for” loop
● Write this code into a file “loop.sh”:

#!/bin/bash
for i in $(seq 1 10)
do
 echo “number $i”
done

● Make the file executable:
chmod u+x loop.sh

● Run the script:
./loop.sh

144

Hands-on
Session 2

Listing files with a “for” loop
● Write this code into a file “loop_files.sh”:

#!/bin/bash
for fic in $(ls)
do
 echo “$fic”
done

● Make the file executable:
chmod u+x loop_files.sh

● Run the script:
./loop_files.sh

145

Hands-on
Session 2

Generating Fibonacci numbers with a “for” loop
● Write this code into a file “fibo.sh”:

#!/bin/bash
arg=$1
echo "Here are the $arg first Fibonacci numbers :"
a=0
b=1
echo $a
echo $b
for i in $(seq 1 $arg)
do
 c=$[$a + $b]
 echo $c
 a=$b
 b=$c
done

● Check the script:
chmod u+x fibo.sh
./fibo.sh 10

146

Hands-on
Session 2

Discovering the “while” loop
● While the condition of the “while” command is true, you keep on looping. To

illustrate this, we will create a infinite loop.
● Write this code into a file “infinite_while_loop.sh”:

#!/bin/bash
echo "Press CTRL+C to stop the loop"
while true
do
 echo "You are caught in an infinite loop"
 sleep 1
done

● Check the script:
chmod u+x infinite_while_loop.sh
./infinite_while_loop.sh

147

Hands-on
Session 2

Interactive script with “read” and “while”
● The “read” command waits for the user to type in something until the ENTER key has

been pressed. What the user has typed is kept in the variable following the “read”
keyword.

● Write this code into a file “interactive_loop.sh”:
#!/bin/bash
line='start'
while [$line != 'stop']
do
 read line
done

● Run the script:
chmod u+x interactive_loop.sh
./interactive_loop.sh

How to stop this script?

148

Hands-on
Session 2

Generating lists with the “while” loop
● We will use the “while” loop to print the list of the square integers little than a given integer.
● Write this code into a file “list_squares.sh”:

#!/bin/bash
limit=$1
sq=1
int=1
while [$sq -lt $limit]
do
 echo $sq
 int=$[$int + 1]
 sq=$[$int * $int]
done

● Check the script:
chmod u+x list_squares.sh
./list_squares.sh 125

149

Hands-on
Session 2

A script that prints to a file a report of all the processes
● Write this code to a file “report.sh”:

#!/bin/bash
pstree -apnu > “report_$(date +%s)”

● Make the file executable:
chmod u+x report.sh

● Run the script :
./report.sh

● Check the result

150

Hands-on
Session 2

Understanding environment variables
● Enter the following command:

export MYOWNVAR=”afancyvalue”
● Write this code to a file “print_var.sh” :

#!/bin/bash
echo Value of the variable: $MYOWNVAR

● Make the file executable:
chmod u+x print_var.sh

● Run the script:
./print_var.sh

● Check the result

151

Hands-on
Session 2

Discovering the “if” command
● Read the section The “if” command on this page:

https://www.digitalocean.com/community/tutorials/ho
w-to-write-a-simple-shell-script-on-a-vps-part-3

● Try the following code in a shell script:
#!/bin/bash
if [20 -lt 30]
then
 echo “20 is indeed less than 30”
fi

https://www.digitalocean.com/community/tutorials/how-to-write-a-simple-shell-script-on-a-vps-part-3
https://www.digitalocean.com/community/tutorials/how-to-write-a-simple-shell-script-on-a-vps-part-3

152

Hands-on
Session 2

Using comparison operators in “if” commands
● In this exercise, we will write a script that takes an integer as argument and then checks if its

value is strictly greater than 10.
● Write the following code in a shell script “check_integer.sh”:

#!/bin/bash
if [$1 -gt 10]
then
 echo “your value is greater than 10”
else
 echo “your value is less than or equal to 10”
fi

● Make the script executable and check it:
chmod u+x ./check_integer.sh
./check_integer.sh 1
./check_integer.sh 10
./check_integer.sh 11

153

Hands-on
Session 2

Nesting “if” using “elif” commands
● In this exercise, we will write a script that takes an integer as argument and then checks if its value is strictly

greater or equal or strictly less than 10.
● Write the following code in a shell script “check_integer_improved.sh”:

#!/bin/bash
if [$1 -gt 10]
then
 echo “your value is stricly greater than 10”
elif [$1 -eq 10]
then
 echo “your value is equal to 10”
else
 echo “your value is strictly less than 10”
fi

● Make the script executable and check it:
chmod u+x ./check_integer_improved.sh
./check_integer_improved.sh 1
./check_integer_improved.sh 10
./check_integer_improved.sh 11

154

Hands-on
Session 2

Using string checking operators in “if” commands
● Write this code to a file “check_arg.sh”:

#!/bin/bash
if [-z $1]
then
 echo “Error : Argument missing !”
 exit 1
fi
echo “Argument : $1”

● On this page, find the meaning of the '-z' in the condition of the 'if':
https://www.digitalocean.com/community/tutorials/how-to-write-a-simple-shell-script-on-a-vps-part-
3

● Make the file executable and test it:
./chmod u+x check_arg.sh
./check_arg.sh myargument
./check_arg.sh

● What's the role of the line 'exit 1'? (Hint : check the code without it)

https://www.digitalocean.com/community/tutorials/how-to-write-a-simple-shell-script-on-a-vps-part-3
https://www.digitalocean.com/community/tutorials/how-to-write-a-simple-shell-script-on-a-vps-part-3

155

Hands-on
Session 2

Using functions
● Write this code to a file “function_add.sh”:

#!/bin/bash
add() {
 sum=$[$1 + $2]
 echo $sum
}
add 1 3

● Make the file executable and test it:
./chmod u+x function_add.sh
./function_add.sh

156

Lab 1
Exploring a big text file (1/2)

● Getting the text file:
wget http://www.gutenberg.org/files/4300/4300-0.txt

● Using ls command, get:
– the size in bytes and in human readable format
– the permissions (who has the right to read?)

● Getting some statistics on the file content:
– using wc, get the number of words and lines

157

Lab 1
Exploring a big text file (2/2)

● Parsing the file with basic commands:
– Navigate through the file with less, and do some

basic word search (suggested keyword: “Molly”,
“Bloom”,...)

– Same exercise but with nano
– Check case sensitivity of the grep command with

keyword “molly” and “Molly”. Find in the man pages
how to make grep case-insensitive.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157

